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A STUDY OF THE CONVECTIVE AND RADIA.TIVE HFATIXG OF . - 

ENTERING THE ATMOSPHERES OF VETYUS AND MARS AT 

SUPERORBITAL SPEEDS 

By Fred A. Demele 

An analyt ical  study i s  made of t h e  radiat ive and convective heating encount- 
ered by a short 10' half-angle blunt capsule and by sharp conical shapes entering 
assumed atmospheres of Venus and Mars at  superorbital  speeds. A simplified theo- 
r e t i c a l  analysis i s  adopted f o r  t h e  convective mode, whereas experimental shock- 
layer  radiat ion i s  u t i l i z e d  f o r  t h e  radiat ive mode. 

The analysis indicates t h a t  f o r  blunt capsule en t r i e s  a t  speeds somewhat 
greater  than the Hohmann t r a n s f e r  planetary arr ival  ve loc i t i e s ,  the predominant 
heating mode i s  by radiat ion i n  t h e  case of Venus and by convection i n  the  case 
of Mars. It i s  shown t h a t  sweepback of t h e  bow shock can reduce the radiat ive 
input so d r a s t i c a l l y  t h a t  f o r  Venus entry the t o t a l  combined radiat ive and con- 
vective heat input of a conical shape w i l l  be about half tha t  o f  a blunt capsule. 
Because convective heating predominates i n  the Mars entry, l i t t l e  or no reduction 
i n  t o t a l  heat i s  afforded by conical shapes. However, since the radiat ion i s  
highly dependent on velocity,  conical shapes appear a t t r a c t i v e  for Mars entry at 
higher ve loc i t ies  (say 40,000 f t / s ec )  corresponding t o  those f o r  shortened i n t e r -  
planetary t r i p  times. There i s  strong experimental evidence t h a t  t he  in tens i ty  
of radiation i s  s ign i f icant ly  influenced by gas composition. It follows, there-  
fore,  t h a t  for blunt capsule en t r i e s  wherein the radiat ive heating predominates, 
t he  t o t a l  heat input s imilar ly  i s  strongly dependent on the  gas composition. I n  
contrast ,  t he  t o t a l  heat input t o  optimum conical shapes does not vary s i g n i f i -  
cantly with gas composition i n  the Venus and Mars atmospheres. 

One of t he  challenging problems confronting the  designer of missiles and 
en t ry  vehicles is t h a t  of aerodynamic heating. 
(e.g., r e f .  1) t h a t  when t h e  predominant mode of heating i s  convection, as i n  
s a t e l l i t e  entr ies ,  t h e  heat input can be minimized if a large r a t i o  of pressure- 
to - f r ic t ion  drag i s  maintained, as a2forded by blunt shapes. However, as entry 
speeds increase t o  parabolic values and above, t h e  vehicle shock-layer tempera- 
t u r e  increases during entry, u n t i l  t h e  air  i n  t h i s  region undergoes dissociation 
and f i n a l l y  ionization. The shock-layer gas then emits energy by radiation, 
which can be a s ignif icant  component of t h e  t o t a l  heat input.  For spherical  nose 
shapes t h e  radiation has been found t o  decrease ra ther  rapidly away from t h e  
stagnation region and, fur ther ,  t o  be proportional t o  t h e  shock standoff distance, 
so  t ha t  a s m a l l  nose radius i s  desirable to minimize t h e  radiat ive heat input t o  
t h e  vehicle.  Reference 2 has demonstrated t h e  d e s i r a b i l i t y  of using sharp 

It has been long recognized 



conical shapes t o  suppress the  radiat ive heat input at  ve loc i t ies  much greater  
than parabolic. The concept i s  analogous t o  using sweepback f o r  reducing com- 
p r e s s i b i l i t y  effects ;  namely, t he  radiat ion in t ens i ty  i s  dependent on the  veloc- 
i t y  normal t o  the  bow shock, ra ther  than on the  free-stream velocity.  Optimum 
cone angles a re  developed i n  reference 2 f o r  Earth entry ve loc i t ies  ranging from 
about 10 t o  30 h / s e c ,  f o r  an ablating heat shield.  
remain conical during ablat ion.  

The shapes were assumed t o  

For entry i n t o  planetary atmospheres other than Earth's (e.g. ,  Mars and 
Venus), the  r e su l t s  of reference 2 a re  not d i r e c t l y  applicable, since the  thermo- 
chemical s t ructures  of these atmospheres appear t o  d i f f e r  s ign i f icant ly  from t h a t  
of Earth (see, e .g . ,  ref. 3) .  
pressures, temperatures, and scale  heights, but the consti tuents of the atmos- 
pheres of Venus and Mars seem t o  be mainly nitrogen and carbon dioxide as opposed 
t o  air .  
4) give evidence of much higher radiat ion in t ens i t i e s  from 
representative of those conjectured f o r  Venus and Mars than from a i r .  
more, t he  speeds of entry of ea r ly  planetary probes i n t o  those atmospheres w i l l  
l i k e l y  be at l e a s t  a l i t t l e  greater  than those associated with minimum energy 
interplanetary t r a n s i t s  ( i . e . ,  about 35,000 f t / s ec  f o r  Venus and about 20,000 
f t / s ec  f o r  Mars). 
t o  diminish the  t r a n s i t  times, thereby increasing the  planetary a r r i v a l  veloci-  
t i e s .  Under these circumstances, radiation can be the  dominant mode of heating 
and must be reckoned w i t h  by the designer. The significance of such increased 
radiation r e l a t ive  t o  the  t o t a l  heating encountered by shapes entering assumed 
atmospheres of Venus and Mars i s  the  subject of concern i n  the present report .  

Not only a re  there  differences i n  atmospheric 

Experimental s tudies  being conducted at Ames Resewch Center (see r e f .  
N2 - GO2 mixtures 

Futher- 

However, as booster capabi l i t i es  increase, it may be desirable 

The shapes studied were a short  10' half-angle blunted conical body and 
sharp conical bodies with half'-angles varying from Eo t o  33'. Radiative and 
convective heat inputs a re  presen-bed f o r  steep en t r i e s  at  37,500 and 50,000 f t / s ec  
f o r  Venus and 26,000 and 40,000 f t / sec  f o r  Mars, generally f o r  assumed atmos- 
pheres composed of 7-1/2 percent G O 2  and the  remainder N2. However, the 
e f fec t  of gas composition on t o t a l  heat inputs t o  both shapes i s  a l s o  examined. 
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constant re la t ing  radiant i n t ens i ty  t o  densi ty  and ve loc i ty  

vehicle mass 

ambient pressure 

laminar convective heat -transf e r  r a t e  

stagnation-point laminar Convective heat -transf e r  r a t e  

sonic-point turbulent convective heat -transf e r  r a t e  

radiat ive heat-transfer r a t e  

stagnation-point radiat ive heat -transf e r  r a t e  

t o t a l  laminar convective heat-transfer r a t e  

t o t a l  laminar convective heat input 

t o t a l  radiat ive heat - t ransfer  r a t e  

t o t a l  radiat ive heat input 

sum of convective and radiat ive heat input 

nose radius 

free-stream Reynolds nwnber 

distance from apex along conical surface element 

surface area 

time measured from i n i t i a t i o n  of entry 

temperature 

entry ve loc i ty  

f l i g h t  ve loc i ty  

shock-wave standoff distance 

free-stream density 

density behind shock wave 

Earth sea-level density 

cone semivertex angle 
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cone semivertex angle f o r  min imum t o t a l  heat b p u t  @opt 

OW shock-wave angle 

f l i g h t  -path entry angle YE 

METEOD OF ANALYSIS 

T r a  j ec t  o r i e  s 

The en t ry  t r a j e c t o r i e s  f o r  which t h e  heating analysis  has been made required 
the  solution of planar motion equations f o r  a point-mass body. The solutions 
were obtained numerically on an IBM 7090 computer. 
the  assumption t h a t  t h e  planets were spherical  and nonrotating. The model atmos- 
pheres used (see f i g .  1) are assumed p ro f i l e s  which have been included i n  various 
s tudies  conducted by or f o r  t h e  J e t  Propulsion Laboratory, m d  are  based on 
information given i n  references 5 and 6.  
t i ons  have been s t ipu la ted  f o r  t he  study: 

Inherent t o  t h i s  program w a s  

The following assumptions and condi- 

Planet radius 

Venus Mars 

2.03 41728x107 f t 1. 11351O9X1O7 f t 

Surface gravi ty  28.21488 ft /sec2 12.79512 ft /sec2 

Entry a l t i t ude  700,000 f t  1,000,000 f t  

Entry ve loc i ty  37,300 ft /sec/l05 days 26,000 ft /sec/l35 days 
and transit time 50,000 ft /sec/58 days 40,000 ft/sec/97 days 

Entry angle - 8 9 O  -89' 

Shapes Considered 

Two types of shapes were studied herein, (1) a short  10' half-angle blunted 
conical body, and (2 )  sharp conical shapes with t h e  same diameter as t h e  blunted 
conical body. Dimensional sketches of both types are shown i n  f igure  2. The 
aerodynamic charac te r i s t ics  of t he  b lunted  conical shape have been studied r a the r  
extensively experimentally (see r e f s .  7, 8, and 9) and the  dynamic behavior of 
t h i s  shape during Martian en t ry  w a s  the  subject of analysis i n  reference 10 .  
Although the  afterbodies of these shapes have important e f f ec t s  on aerodynamic 
s t a b i l i t y  and volume required, they contribute l i t t l e  t o  t h e  t o t a l  heat input; 
therefore,  t h e  present study ignores t h e  afterbodies insofar  as heating i s  con- 
cerned. For comparative purposes, both shapes a re  considered t o  have t h e  same 
mass, namely 5.724 slugs. 
coeff ic ient  was  calculated by Newtonian theory. 

To determine t h e  b a l l i s t i c  parameter, m/%A, t h e  drag 
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Convective Heating 

It w a s  recognized t h a t  a rigorous analysis of convective heating should 
account f o r  thermodynamic and transport  properties of t he  gas mixtures i n  the  
boundary layer,  including the  e f fec ts  of gaseous dissociation and ionization. 
However, it appeared desirable t o  determine an approximate equation which could 
be expected t o  yield su f f i c i en t ly  accurate r e su l t s  f o r  comparative heat analysis 
of shapes. The well-known stagnation heating-rate equation f o r  a i r  a t  conditions 
wherein the  stagnation enthalpy i s  much greater  than the  w a l l  enthalpy, 

f i  = CpmL'2Vm" (see r e f .  ll), w a s  found t o  s a t i s f y  this requirement f o r  a 
value of C = 20.4xL0'9 when i s  given i n  Btu/ft2sec. The r e su l t s  obtained 
with this equation agree well with experimental measurements i n  a i r  and C02 
(see r e f .  12) a t  ve loc i t ies  up t o  18,000 f t /sec,  as shown i n  f igure 3.  I n  t h e  
ve loc i ty  range from 20,000 t o  50,000 f t /sec,  the foregoing approximate equation 
w a s  compared with the  theory of Hoshizaki ( r e f .  13) and w a s  found t o  d i f f e r  by 
l e s s  than 10 percent. Since Hoshizaki's theory takes in to  account dissociation 
and ionization and yields  sa t i s fac tory  agreement with experimental heat-transfer 
data obtained i n  p a r t i a l l y  ionized a i r  and 
adopted f o r  use herein. 

CO,, the  approximate equation was 

To evaluate the  t o t a l  heat input f o r  a given shape, it is ,  of course, neces- 
sary t o  determine the l o c a l  d i s t r ibu t ion  of heating f o r  the duration of entry, as  
seen by the  following equation f o r  t o t a l  heat input:  

n n  

The method of Lees ( r e f .  14)  has been used t o  determine the loca l  d i s t r ibu t ion  of 
heating. A s  i n  the  case of the stagnation heating-rate equation, the enthalpy at  
the  w a l l  i s  assumed t o  be much l e s s  than tha t  a t  the boundary-layer edge, and the  
flow, laminar. 
but i s  subject t o  uncertainty f o r  Venus entry. I n  this connection, it can be 
seen i n  f igure  4 t ha t  free-stream Reynolds numbers approaching lo7 per foot occur 
during the  Venus en t r ies .  
heating pulse, and at the  time of maximum heating, Reynolds numbers of 2 or 3xLO" 
per foot  a r e  attained. 

The assumption of laminar flow seems reasonable for Mars entry, 

However, these values occur weU beyond the maximum 

Radiative Heating 

To assess the radiat ion of a gas at  elevated temperatures, the  spectral  
radiance of the  chemical species must be known. 
r i u m  has been qui te  well  defined, both theore t ica l ly  ( r e f .  15) and experimentally 
( r e f .  16 ) .  However, the  theore t ica l  equilibrium radiat ion of C02 - N 2  mixtures 
presently believed t o  be representative of the  atmospheres of Venus and Mars i s  
not yet well  defined. 
recent ly  obtained i n  the  Ames p i l o t  hypersonic f r ee - f l i gh t  f a c i l i t y  (see r e f .  4) 

The radiance of air  i n  equilib- 

Theref ore, t he  experimental shock-layer radiation data 
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have been used t o  assess t h e  rad ia t ive  heat input f o r  a blunt capsule and f o r  
shmp conical shapes entering the  Venus and Mars atmospheres. 

The stagnation rad ia t ive  f l u x  of t he  blunt shape can be expressed by 
% = (%/2 )8  ( e  .g ., r e f .  l7), where i s  the  t o t a l  equilibrium radiat ion flux ir 

per u n i t  volume in t h e  stagnation region and 
which can be evaluated by the  expression, 8/R = 0.78 poo/p2 (see r e f .  18). 
has shown in reference 19 t h a t  a good average of t h e  r a t i o  of shock standoff d i s -  
tance t o  nose radius i s  0.045 f o r  a i r .  
density r a t i o  a t  the  shock wave ex is t  between N2 - C02 mixtures and air, par- 
t i c u l a r l y  f o r  conditions of high enthalpy. Analysis of this region f o r  such mix- 
tu re s  i s  not considered herein, but should be the  subject of fur ther  study. 
t o t a l  radiat ive input for t he  blunt shape can be expressed as 

8 i s  the  shock standoff distance 
Wick 

It i s  recognized t h a t  differences i n  the  

The 

n n  

which, i n  terms of t he  emitted radiation, c a t  be expressed i n  the  form 

Qr 

represents an e f fec t ive  radiating volume of gas a t  
necessary t o  reproduce the  t o t a l  radiat ive heating. 

For-the round nose models used i n  the experimental investigations of references 
4 and 16 t o  obtain shock-layer radiation, t he  effect ive radiating volume f o r  air  
w a s  estimated (see r e f .  16) on the  basis of a constant shock-layer thickness and 
theore t ica l  equilibrium radiation u t i l i z i n g  computed temperature and density dis-  
t r ibu t ions .  The effect ive volume of the  blunt capsule studied herein w a s  
obtained from the effect ive volume computed f o r  t he  experimental models scaled 
by the  cube of t he  r a t i o  of capsule-to-model nose radius. 
do exis t ,  i n  t h a t  the model nose terminated a t  approximately the sonic point, 
whereas the blunt capsule nose i s  more near ly  a complete hemisphere. 
because the theore t ica l  radiation f lux  a t  the  sonic point w a s  l e s s  than 10 per- 
cent of the  stagnation value, neglecting the region behind the  sonic point in 
calculating the effect ive shock volume of t he  capsule would appear t o  r e s u l t  i n  
only a small e r ror  i n  the  t o t a l  radiat ive heat input.  
the  experimental gas radiation, E t ,  has been d i r ec t ly  applied t o  the  blunt cap- 
sule f o r  ident ica l  conditions of free-stream density and velocity.  
conditions outside the  experimental range, the  radiat ion has been assumed t o  vary 
i n  d i rec t  proportion t o  the  free-stream density and exponentially with ve loc i ty  
t o  the  eighth power, t h a t  i s ,  = kpmVm8. For the  gas mixture assumed f o r  most 
of t he  analysis ( i . e . ,  about 7-1/2-percent C02 and the  remainder N2), k has a 
value of 2.055XL0-26 with Et i n  the  Btu/ft3sec, p, i n  slugs/ft3, and V, i n  
f t / sec .  The assumed var ia t ion  of equilibrium radiat ion with density and ve loc i ty  
i s  the  present best  estimate based on the experimental radiation data of re fer -  
ence 4, wherein the  ambient pressure was varied from 3 t o  60 mm Hg absolute and 
the model f l i g h t  veloci ty  was varied from 16,000 t o  26,000 f e e t  per second. It 
i s  recognized that at higher ve loc i t ies ,  t he  radiat ion in t ens i ty  may be dependent 

Geometric differences 

However, 

It should be noted t h a t  

For entry 
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on a veloci ty  power other than 8 (as i s  t h e  case with a i r ) ,  and therefore t h e  
r e s u l t s  f o r  t he  blunt capsule should be considered of a qual i ta t ive nature.  
thermore, a t  the lower densi t ies  there  i s  evidence i n  t h e  t e s t  r e s u l t s  of non- 
equilibrium radiat ion.  Since free-stream densi t ies  of about one hundredth those 
of t h e  experimental data a r e  encountered during the  ear ly  portion of t he  radia- 
t i v e  heat pulse, one might inquire of the v a l i d i t y  of t he  densi ty  extrapolation. 
Following the  arguments advanced i n  reference 20, it i s  assumed herein t h a t  t h e  
degree of completion of t h e  chemical processes i n  t h e  shock layer  depends on t h e  
product of the density and a character is t ic  body length, say the  radius.  
nonequilibrium conditions during fu l l - sca le  capsule entry and f o r  small-scale 
t e s t s  should be concurrent when the  product 
for both. 
matching 
ear ly  i n  the  radiat ive heating pulse. 
wherein t h e  densi t ies  a re  so  low t h a t  nonequilibrium flow l i k e l y  ex i s t s  during a 
large par t  of t he  radiat ive heating pulse. 

Fur- 

That is, 

p& and the  ve loc i ty  are t h e  same 
For the  steep en t r i e s  of t he  blunt capsule considered herein,  t he  

p,R f o r  experimental conditions which a re  mainly i n  equilibrium OCCUTS 

This i s  not the case f o r  shallow en t r i e s  

For the  sharp cones, t h e  temperature behind t h e  shock i s  assumed t o  be con- 
Therefore, the equilibrium radiat ive rlux t o  s t an t  over the length of the cone. 

t he  surface can again be expressed by 
ness i s  seen from the adjacent sketch t o  be: 

9, = (Et/2)6, where the  shock-layer thick-  

/ 
6 = s sin(Bw - 

The t o t a l  radiat ive heat input can then be 
expressed by the r e l a t ion :  

\ Bow shock 
It w i l l  be recognized t h a t  t h e  surface 
in t eg ra l  i s  simply the  shock-layer volume, 
which i s  e a s i l y  evaluated once the shock 
angle i s  determined. 
sis ,  t h e  shock angles were determined f o r  dissociated equilibrium a i r  ( r e f .  21). 
Future study should include the  def in i t ion  of conical flows f o r  C 0 2  - N2 m i x -  
t u re s .  The sketch shows t h a t  t he  ve loc i ty  contributing t o  the  radiat ion i s  the  
free-stream component normal t o  the  conical shock. It w i l l  be recal led t h a t  t h e  
experimental radiat ion intensi ty ,  Et, i s  t h e  blunt model stagnation value. 
fore ,  when the  radiat ion data a r e  applied t o  the sharp cones, t he  model veloci ty  
i s  matched with the  free-stream component of ve loc i ty  normal t o  the  conical shock 
( i . e . ,  V, s i n  e,). 
i t i e s  f o r  which radiat ion i n t e n s i t i e s  were obtained were suf f ic ien t ly  high t o  
encompass most of t he  entry conditions studied f o r  t h e  cones. As  i n  t he  case of 
t he  blunt shape, t he  radiat ion has been assumed t o  vary i n  d i r ec t  proportion t o  
t h e  free-stream densi ty  f o r  entry conditions outside t h e  experimental range. It 
i s  probable t h a t ,  par t icu lar ly  during t h e  en t ry  conditions of low density previ-  
ously noted, a region of nonec@librium flow w i l l  p reva i l  near the shock surface. 

I n  the present analy- 

There- 

Because of this ve loc i ty  reduction, t he  experimental veloc- 



The problem of theore t ica l ly  defining such an area i s  d i f f i c u l t  both because of 
t h e  complexity of t h e  physics of t h e  nonequilibriwn processes, and because the  
relaxation along curved streamlines of t h e  flow (see,  e.g. ,  ref .  22) must be com- 
puted. 
cones should be studied t o  assess the  v a l i d i t y  of t he  asswnp%ions made herein.  

This problem as wel l  as experimental radiat ion measurements of sharp 

RESULTS AND DISCUSSION 

Heating Rates 

To i l l u s t r a t e  the significance of radiat ive heating f o r  Venus-Mars entry,  
time h i s to r i e s  of stagnation-point convective and radiat ive heating r a t e s  f o r  t he  
blunt capsule a re  shown i n  f igure 5 .  The accompanying t r a j e c t o r i e s  a re  normal t o  
the  planet surface and have i n i t i a l  ve loc i t ies  of 37,500 f e e t  per second f o r  
Venus and 26,000 f e e t  per second f o r  Mars, somewhat greater  than the Hohmann 
t ransfer  values i n  each case. It i s  evident t h a t  f o r  t he  Venus entry shown, the  
radiat ive heating far exceeds the  convective heating f o r  t he  assumed capsule 
geometry during most of t he  period of s ignif icant  heating. On the other hand, 
f o r  t he  Mars entry shown, the  convective heating dominates the  radiat ive heating 
throughout t he  entry.  The difference i n  the  indicated r e l a t ive  importance of 
radiat ive heating i s  due, i n  par t ,  t o  higher densi t ies  but mainly t o  the  higher 
ve loc i t ies  associated with the  Venus entry.  

Time h i s to r i e s  of t o t a l  heat-transfer r a t e  a re  shown i n  f igure 6 both f o r  
For t he  blunt capsule and f o r  a cone having t h e  same 

the  blunt capsule, t he  r e l a t i v e  importance of radiat ive and convective heat input 
i s  similar t o  t h a t  indicated by the  stagnation heating r a t e s ,  although the  r a t i o  
of radiat ive t o  convective heat input i s  l e s s  than the  r a t i o  of radiat ive t o  con- 
vective stagnation heating r a t e .  For Venus entry, substant ia l  reductions i n  com- 
bined radiat ive and convective heat input can be real ized by the  use of a sharp 
cone. On the  other hand, f o r  the Mars entry shown, the reduction i n  radiat ive 
heat input by use of a sharp cone i s  o f f se t  by the  increase i n  convective heat 
input, indicating no advantage of t he  sharp cone over t he  blunt capsule from 
t o t a l  heat considerations. It w i l l  be shown subsequently t h a t  s ignif icant  reduc- 
t i ons  i n  t o t a l  heat encountered during Mars entry can be real ized by t h e  use of a 
sharp cone, but a t  entry ve loc i t ies  much higher than the  Hohmann t ransfer  value.  

m/%A ( i . e . ,  8, = 3 6 0 ) .  

Total Heat Input 

Because the  weight of heat protection of an entry vehicle i s  dependent on 
the  t o t a l  heat input, t he  following sections a r e  concerned with considerations 
which influence the t o t a l  heat.  The manner i n  which the  cone angle a f f ec t s  t he  
convective, radiative,  and combined t o t a l  heat inputs i s  examined. Comparisons 
a re  then made between t h e  t o t a l  heat inputs t o  optimum cones and t o  the blunt cap- 
sule described e a r l i e r  and, f i n a l l y ,  t he  influence of gas composition i s  studied. 
I n  addition t o  the t r a j e c t o r i e s  examined previously wherein t h e  en t ry  ve loc i t ies  
were s l i g h t l y  higher than the  Hohmann values, steep t r a j e c t o r i e s  with entry 
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ve loc i t i e s  representative of r e l a t ive ly  short  interplanetary t r i p s ,  namely 50,000 
f t / s ec  f o r  Venus, and 40,000 f t / s ec  f o r  Mars, were u t i l i z e d  i n  the  s tudies .  

D_ependence on cone angle. - The e f f ec t  of cone angle on convective, radia-  
t i v e ,  and .combined t o t a l  heat inputs i s  shown i n  f igure  7 f o r  Venus entry,  and i n  
f igure  8 f o r  Mars entry.  The decrease i n  convective heating r a t e  with increasing 
cone angle i s  la rge ly  due t o  the  higher drag associated with increasing cone 
angle, since the  convective heat var ies  inversely as the  square root of the  drag 
coef f ic ien t .  The trends i n  drag coeff ic ient  ( i . e . ,  increase with increasing cone 
angle) and i n  shock-layer volume (reduction with increasing cone angle f o r  a 
constant base diameter) tend t o  reduce the  rad ia t ive  heat input a t  t he  higher 
cone angles. However, t he  rad ia t ive  heat increases with increasing cone angle as 
shown because of t he  large exponential dependence on the  ve loc i ty  component nor- 
m a l  t o  the  shock as noted e a r l i e r .  A n  in te res t ing  finding i s  t h a t  a t  t he  optimum 
cone angle ( i . e . ,  t he  angle a t  which the  combined heat input i s  a minimum), t he  
rad ia t ive  heat input i s  approximately 15 percent of the  convective heat input .  
The r e s u l t  of increasing the  b a l l i s t i c  parameter of the  vehicle i s  t o  
increase the  t o t a l  heat as  well  as  t o  lower the  optimum cone angle. It w i l l  be 
recal led t h a t  t he  coGvective heating r a t e  var ies  as 
in t ens i ty  as  For steep planetary en t ry  the  convective heat input likewise 
var ies  as  p,, or as 
m/C$ (see r e f .  11 for development of t h e  correspondence between p, and m/C$). 
Thus, t h e  greater  dependence of rad ia t ive  heat input on m/w resu l t s  i n  the  
lower optimum cone angles with increasing It i s  fu r the r  evident t h a t  
entry a t  higher ve loc i t i e s  r e s u l t s  not only i n  increased t o t a l  heat but i n  lower 
optimum cone angles, because rad ia t ive  heating increases with ve loc i ty  so much 
f a s t e r  than convective heating. Thus, f o r  Venus en t ry  t h e  optimum cone angle f o r  
a vehicle having would be about 35’ f o r  an en t ry  ve loc i ty  of 37,500 
f t / s ec  (see f i g .  7 (a)  1 and about 27’ f o r  an en t ry  ve loc i ty  of 50,000 f t / s ec  (see 
f i g .  7 ( b ) ) .  For Mars en t ry  a t  26,000 f t / s ec  (see f i g .  8 (a ) ) ,  because the  radia-  
t i v e  heating i s  small, t h e  optinun angle i s  large,  being somewhat higher than 50’ 
f o r  an m/CD*A = 1. 
8 ( b ) )  t h e  rad ia t ive  heating i s  s ignif icant  and the  optimum cone angle i s  reduced 
t o  an average value of about 35’ f o r  t he  range of 
noted by comparing Mars ent ry  at  40,000 f t / s ec  ( f i g .  8 ( b ) )  with Venus en t ry  a t  
37,500 f t / sec  ( f i g .  7 (a) )  t h a t  although the  optimum cone angles are  about t he  
same, s ign i f i can t ly  higher t o t a l  heat i s  encountered during Mars entry.  Since 
the  atmosphere of Mars has a higher scale  height than t h a t  of Venus ( see  f i g .  I), 
t h e  heating pulse during Mars ent ry  i s  considerably longer than t h a t  f o r  Venus 
entry. This e f f ec t ,  coupled with a higher i n i t i a l  ve loc i ty  which tends t o  offset  
t he  e f f ec t  of lower dens i t ies  encountered i n  the  Mars atmosphere, r e s u l t s  i n  the  
higher t o t a l  heat indicated.  

m/CD*A 

poo0’5 and the  radiat ive 
p,. 

p o o O - 5 ,  o r  as  ( ~ / C D A ) O ” ,  and t h e  rad ia t ive  heat input as  

m/%*A. 

m/CD*A = 1 

However, f o r  t h e  en t ry  ve loc i ty  of 40,000 f t / s ec  (see f i g .  

m/Q*A shown. It may be 

C-omxarison of shapes.- The t o t a l  heat input and t he  r a t i o  of rad ia t ive  t o  
convective heat input of t h e  blunt capsule and of optimum sharp cones a re  shown 
i n  f igure  9 f o r  Venus and Mars entry.  
afforded by t h e  use of sharp cones a re  seen t o  increase s ign i f icant ly  with 
increasing m/%*A. 
cones i s  by convection, t he  accompanying t o t a l  heat increases roughly as 
(m/%*A)o.5. 
heating i s  la rge  compared with t h e  convective, t h e  t o t a l  heat increase approaches 
a first power var ia t ion  with 

The reductions i n  t o t a l  heat input 

Since t h e  majority of t h e  heat input t o  the  optimum sharp 

On t he  other hand, f o r  blunt capsule en t r i e s  wherein the  rad ia t ive  

m/CD*A. 
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Effect of g-as- -c-oppcg&t&on.- The r e su l t s  presented thus f a r  per ta in  t o  a gas 
mixturybaving a volumetric composition of about 7-l/2 percent 
remainder Nz. 
on the r e l a t ive  abundance of C02 and N 2  i n  mixtures of these gases, it my be 
expected t h a t  the  t o t a l  heat input during en t ry  and the  optimum cone angle will 
depend on the  gas composition. To examine t h i s  premise, calculations were made 
f o r  gas mixtures ranging from pure N 2  t o  70 percent N 2  - 30 percent CO,, 
u t i l i z ing  the  experimental radiat ion data of reference 4, and the  r e su l t s  a re  
shown f o r  Venus and Mars entry i n  f igures  10 and 11, respectively.  Although the  
absolute magnitudes a re  uncertain because of t he  preliminary nature of the  exper- 
imental radiation data, the r e su l t s  give evidence of a maximum t o t a l  heat input, 
and therefore a minimum optimum cone angle, occurring f o r  a mixture containing 
between 10 and 13 percent It i s  seen t h a t  the  cone t o t a l  heat i s  not 
strongly dependent on gas composition, primarily because the radiation heat input 
can be held small by optimizing the  cone angle, t h a t  i s ,  by u t i l i z ing  smaller 
cone angles as the radiation in t ens i ty  increases.  
capsule t o t a l  heat var ies  considerably with gas composition, and f o r  the  gas com- 
posit ion of highest radiation, appears t o  be between two and three times as large 
as the  cone t o t a l  heat.  

C02 and the 
Since the  in t ens i ty  of radiat ion as shown i n  reference 4 depends 

C 0 2 .  

On the  other hand, the blunt 

SUMMCLRY OF RESULTS 

A study has been conducted of the  convective and radiat ive heating associ-  
ated with steep entry of a short 10’ half-angle blunt capsule and sharp conical 
shapes i n t o  the  atmospheres of Venus and Mars at ve loc i t i e s  i n  excess of para- 
bol ic  values. The pr incipal  r e su l t s  a re :  

1. For Venus entry at  ve loc i t ies  somewhat above the  Hob" transfer  value, 
t he  radiat ive heating t o  a blunt capsule appears s ign i f icant ly  higher than the  
convective heating. 
d ra s t i ca l ly  l e s s .  For example, a cone of the  same m/C$ as  the blunt capsule 
i s  indicated t o  have only about half the  t o t a l  heat input .  

However, on a conical shape the  radiat ive input would be 

2. For Mars entry at  ve loc i t ies  somewhat i n  excess of the  H o h ”  t r ans fe r  
value, convection i s  the  predominant heating mechanism, and the  shape o f t h e  cap- 
sule has l i t t l e  e f fec t  on the  t o t a l  heat.  
i t i e s ,  say 40,000 f t / sec ,  the  heating of a blunt capsule i s  predominately by 
radiation, and, as i n  the case of Venus entry, large reductions i n  t o t a l  heat 
input a re  indicated through the  use of conical shapes. 

However, at much higher entry veloc- 

3 .  The cone angle f o r  m i n i m u m  combined radiat ive and convective heat input 
decreases as  the entry ve loc i ty  i s  increased. 
about 13 percent of t he  convective input when the  cone angle i s  optimum. 

The radiat ive input appears t o  be 

4.  The percentage of C02 i n  C02 - N 2  mixtures s ignif icant ly  in f lu -  
ences the in tens i ty  of gaseous radiation, such that en t r ies  i n to  planetary atmos- 
pheres having between 10 and 1.5 percent C02 and the  remainder N2 would be 
most severe from t o t a l  heat considerations. 

10 



5 .  The t o t a l  heat input t o  optimum conical shapes, in contrast t o  that of 
the  blunt capsule, i s  not strongly dependent on gas composition, malking such 
shapes fur ther  a t t r ac t ive  f o r  use i n  ear ly  planetary en t r ies  because of the 
uncertainty of gas consti tuents in the Venus and Mars atmospheres. 

Ames Research Center 
National Aeronautics k d  Space Administration 

Moffett Field,  C a l i f . ,  Sept. 11, 1963 
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